Synchronization of Chaotic Systems using NAC and Its Application to Secure Communication

نویسندگان

  • P. P. Singh
  • J. P. Singh
  • B. K. Roy
چکیده

This paper aims towards synchronization of Bhalekar-Gejji chaotic system and its application to secure communication. Synchronization is achieved using suitable nonlinear active control (NAC) scheme. Proposed synchronization is used to achieve secure communication using NAC. For secure communication, the information signal is masked with one of the state of chaotic system at transmitter end and retrieved at receiver end. Synchronization and convergence of error dynamics are achieved by using required Lyapunov stability condition. MATLAB simulation results validate synchronization of Bhalekar-Gejji chaotic system and its application to secure communication. Simulation results reveal that synchronization and its application using NAC is achieved successfully. Further, performance of NAC is given based on performance criteria terms as average synchronization error for both synchronization and its application to secure communication.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-Synchronization of Complex Chaotic T-System Via Optimal Adaptive Sliding-Mode and Its Application In Secure Communication

In this paper, an optimal adaptive sliding mode controller is proposed for anti-synchronization of two identical hyperchaotic systems. We use hyperchaotic complex T-system for master and slave systems with unknown parameters in the slave system. To construct the optimal adaptive sliding mode controller, first a simple sliding surface is designed. Then, the optimal adaptive sliding mode controll...

متن کامل

Modified Sliding-Mode Control Method for Synchronization a Class of Chaotic Fractional-Order Systems with Application in Encryption

In this study, we propose a secure communication scheme based on the synchronization of two identical fractional-order chaotic systems. The fractional-order derivative is in Caputo sense, and for synchronization, we use a robust sliding-mode control scheme. The designed sliding surface is taken simply due to using special technic for fractional-order systems. Also, unlike most manuscripts, the ...

متن کامل

A Secure Chaos-Based Communication Scheme in Multipath Fading Channels Using Particle Filtering

In recent years chaotic secure communication and chaos synchronization have received ever increasing attention. Unfortunately, despite the advantages of chaotic systems, Such as, noise-like correlation, easy hardware implementation, multitude of chaotic modes, flexible control of their dynamics, chaotic self-synchronization phenomena and potential communication confidence due to the very dynami...

متن کامل

طراحی سیستم مخابراتی امن با استفاده از سنکرونکردن سیستمهای آشوبی

In this paper, the concept of secure synchronization of chaotic systems using adaptive and robust techniques , has been discussed and then a new secure communication scheme, based on secure synchronization of a general class of chaotic systems called Generalized Lorenz System, are presented. This communication scheme is combination of conventional cryptographic methods and chaotic modulation me...

متن کامل

Finite Time Mix Synchronization of Delay Fractional-Order Chaotic Systems

Chaos synchronization of coupled fractional order differential equation is receiving increasing attention because of its potential applications in secure communications and control processing. The aim of this paper is synchronization between two identical or different delay fractional-order chaotic systems in finite time. At first, the predictor-corrector method is used to obtain the solutions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016